Insect Conservation and Diversity (2021) doi: 10.1111/icad.12500

A worthy conservation target? Revising the status of the rarest bumblebee of Europe

GUILLAUME GHISBAIN,¹ BAPTISTE MARTINET,^{1,2} THOMAS J. WOOD,¹ KIMBERLY PRZYBYLA,¹ DIEGO CEJAS,¹ MAXENCE GÉRARD,^{1,3} PIERRE RASMONT,¹ ALIREZA MONFARED,⁴ IN IRENA VALTEROVÁ^{5,6} and DENIS MICHEZ¹ ¹Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium,²Université Libre de Bruxelles, Evolutionary Biology & Ecology, Bruxelles, Belgium, ³INSECT Lab, Division of Functional Morphology, Department of Zoology, Stockholm University, Stockholm, Sweden, ⁴Faculty of Agriculture, Department of Plant Protection, Yasouj University, Yasouj, K. & B. Province, Iran, ⁵Academy of Sciences of the Czech Republic, Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic and ⁶Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic

Abstract. 1. Against the context of global wildlife declines, targeted mitigation strategies have become critical to preserve what remains of biodiversity. However, the effective development of conservation tools in order to counteract these changes relies on unambiguous taxonomic determination and delineation.

2. In this study, we focus on an endemic bumblebee species recorded only from the highest altitudes of the Sierra Nevada (Spain), *Bombus reinigiellus* (Rasmont, 1983). The species has the smallest range of any European bumblebee, along with a restricted diet and an inability to disperse because of its isolated montane distribution, making it an appropriate conservation target. However, through an integrative taxonomic approach including genetics, morphometrics and semio-chemistry, we demonstrate the conspecificity of this taxon with one of the most common and widespread bumblebee species of Europe, *Bombus hortorum* (L. 1761). We assign a subspecies status to this endemic taxon (*Bombus hortorum reinigiellus* comb. nov.) shown to be different in colour and morphology but also in wing shape and relative wing size compared to the other conspecific subspecies.

3. Following our taxonomic revision, we reassessed the IUCN conservation status of *Bombus hortorum* both at the continental and Spanish scale. We then propose how historic climatic oscillations of the last Ice age could explain such a phenotypic divergence in a post-glacial refugium and highlight the critical role of establishing unambiguous taxonomic revision prior to any conservation assessment.

Key words. Conservation status, Hymenoptera, ice ages, integrative taxonomy, rare species, Red Lists, relictual populations, wild bees.

Introduction

Wildlife is rapidly declining globally, threatening the functioning and resilience of ecosystems (Scheffers *et al.*, 2016; Sanchez-Bayo & Wyckhuys, 2019). Against this backdrop of negative population trends and species extinctions, targeted conservation strategies have become an ever more important tool for preserving what remains of wild populations. However, it is widely acknowledged that a basic requirement for designing and enacting a conservation programme for a targeted wild organism is an unambiguous taxonomic determination and delineation (Hey *et al.*, 2003; Mace, 2004). Red Lists and climatic atlases offer a clear example of this principal, since

© 2021 Royal Entomological Society.

Correspondence: Guillaume Ghisbain, Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium. E-mail: guillaume.ghisbain@umons.ac.be

complete and unequivocal species inventories and distribution records constitute their starting point in terms of conservation assessments and projections (e.g. Settele *et al.* 2008; van Swaay *et al.*, 2010; Bilz *et al.*, 2011).

This issue of problematic taxonomic delineation for conservation purposes has been well illustrated in bumblebees (genus *Bombus*), a group of globally threatened pollinators. Bumblebees constitute a diversified and widespread group of coldadapted bees that are key components of plant-pollinator communities in temperate and cold areas of the Northern hemisphere (Hegland & Totland, 2008; Woodard *et al.*, 2015). However, a high number of species show negative population trends (Williams & Osborne, 2009; Cameron & Sadd, 2020). Among the causes of these declines are climate change, intensification of agriculture including loss of flowering resources and increased pesticide use, as well as urbanisation and pathogen spillover (Cameron *et al.*, 2011; Rasmont *et al.*, 2015a; Potts *et al.*, 2016; Rollin *et al.*, 2020; Martinet *et al.*, 2021).

Apart from a conservation perspective, bumblebees have become an increasingly popular model in the fields of evolutionary biology (Tian et al., 2019), biogeography (Williams et al., 2018; Ghisbain et al., 2020b) and integrative taxonomy (Martinet et al., 2019; Williams et al., 2020). However, despite the long history of classical taxonomic work (i.e. not involving molecular tools) on bumblebees compared to other bees (Williams, 1998), their effective conservation has remained challenging due to particularly low levels of interspecific morphological differentiation (Michener, 2007; Williams et al., 2012, 2020) associated with highly variable intraspecific colour patterns (Williams, 2007; Hines & Williams, 2012; Ezray et al., 2019; Tian et al., 2019; Williams et al., 2019; Ghisbain et al., 2020a), making species level identification difficult. Delineation based on regular taxonomic tools (i.e. visual examination of the specimens) often fails to uncover correct phylogenetic affinities and levels of differentiation for more widespread taxa, resulting in over-split or over-lumped species that do not accurately represent the true diversity of the group. This delineation issue is particularly problematic for peripheral or allopatric populations showing tenuous morphological dissimilarities (e.g. cryptic taxa) within widespread species (Williams et al., 2020). In this context, the use of genetic and semiochemical characters to delineate species in integrative frameworks has led to profound changes in the accepted taxonomy of species and their associated distributions (Martinet et al., 2019; Ghisbain et al., 2020a; Lhomme et al., 2021). In Europe, for instance, the consequences of such reassessments are crucial, with an increasing need to revise and update the assessments and conclusions presented in the last European Red List of Bees (Nieto et al., 2014).

In this study, we examine for the first time the case of a bumblebee taxon *Bombus reinigiellus* (Rasmont, 1983) (Fig. 1), endemic to the highest altitudes of the Sierra Nevada (Spain) (Rasmont, 1983; Rasmont *et al.*, 2015a). The species was described based on the combination of a unique colour pattern along with specific morphological features (Rasmont, 1983). In its original description, *Bombus reinigiellus* was diagnosed from the two putatively closely related taxa *B. hortorum* (L., 1761) and *B. asturiensis* (Tkalců, 1974), the latter now considered conspecific with *B. hortorum*. Following the original description of *Bombus reinigiellus*, the species status of the taxon was first contested and synonymised with *B. hortorum* based on morphological characters (Castro, 1987). A year later, however, the same author highlighted key morphological and colour differences that separated both males and females of *reinigiellus* from *hortorum* and revised *B. reinigiellus* as a valid species (Castro, 1988). The taxon *reinigiellus* has continued to generate debate, with authors considering *reinigiellus* as a synonym of *hortorum* (e.g. Williams, 1998), although a commonly held view is to consider *reinigiellus* as a separate, valid, endemic species (Ortiz-Sánchez & Ornosa, 2004; Verdú & Galante, 2005; Barea-Azcón *et al.*, 2008; Nieto *et al.*, 2014; Rasmont *et al.*, 2015a; Ortiz-Sánchez *et al.*, 2018; Michez *et al.*, 2019).

Against the background of global bumblebee decline, a taxon like B. reinigiellus offers an excellent case study to address in a context of developing accurate conservation strategies for multiple reasons. Firstly, its highly restricted distribution range, with an area of occupancy estimated at 36 km², makes it the most localised bumblebee in the West-Palearctic region (Rasmont et al., 2015b). Its present conservation status, Endangered at the European level (Nieto et al., 2014) and Endangered at the Spanish level, with its subsequent listing in important conservation inventories of Spain (e.g. Ortiz-Sánchez & Ornosa, 2004; Verdú & Galante, 2005; Barea-Azcón et al., 2008; Ortiz-Sánchez et al., 2018) make B. reinigiellus of critical interest in a context of global bee decline. Finally, B. reinigiellus has a reported partial dietary specialisation with the genus plant Aconitum (Rasmont, 1983; Castro, 1988). Because plants of the genus Aconitum present flowers with elongate corollae that are almost exclusively pollinated by Bombus (Thøstesen & Olesen, 1996; Ponchau et al., 2006, Gosselin et al., 2013), and because B. reinigiellus is one of the only long tongued bumblebees found at such altitudes in southern Iberia (Rasmont et al., 2015a), there could be a close relationship between both partners (Rasmont, 1983; Castro, 1988).

In this study, we aim to formally reassess the taxonomic status of this species using genetic, semio-chemical, and morphometric characters (wing shape and size) and to re-assess its IUCN conservation status at both the continental and Spanish scales based on our taxonomic conclusions. We discuss how the climatic oscillations of the Quaternary might have trapped this taxon in a refugium and how this isolation might have led to a phenotypic, potentially adaptive differentiation. We finally discuss the importance of considering a strongly supported taxonomy as prerequisite for the effective implementation of a conservation status in such taxa.

Materials and methods

Data collection and identification

We sampled both male (n = 6) and worker (n = 9) specimens of *Bombus reinigiellus* in two localities of the Sierra Nevada (Spain) in August 2019 (Supporting Information file 1). We used the characters cited in the original description of Rasmont (1983) to morphologically align our freshly collected specimens with

Figure 1. Upper-left corner: lateral view of a queen of *B. hortorum hortorum*; upper-right corner: lateral view of the queen holotype of *Bombus reini*giellus (Rasmont, 1983); bottom-left corner: facial view of a queen of *B. hortorum hortorum*; bottom-right corner: facial view of the queen holotype of *B. reinigiellus* (Rasmont, 1983). Source: Photo credit P. Rasmont. [Color figure can be viewed at wileyonlinelibrary.com]

the type series of *B. reinigiellus* (hosted in the Zoologische Staatssammlung, Germany, comprising a queen holotype and three queen paratypes), which enabled us to unambiguously attribute the name *B. reinigiellus* to our freshly collected individuals.

Examined traits

We examined a set of three informative traits to delineate bumblebee species, the first being a mitochondrial barcode fragment of the cytochrome oxidase I (*COI*), commonly used in taxonomic assessments (e.g. Martinet *et al.* 2018; Williams *et al.* 2019) as it presents a high substitution rate and shows rapid coalescence (Zink & Barrowclough, 2008; Baker *et al.*, 2009). This gene has been shown to accurately predict bumblebee species delineation in many large-scale studies (e.g. Williams *et al.*, 2012, 2019, 2020) and has been recently shown as a useful proxy of gene flow in a widespread cryptic bumblebee species complex (Ghisbain *et al.*, 2020a). It is, however, widely acknowledged that the use of *COI* must be always combined with other traits given that its high substitution rate can excessively separate taxa that are conspecific but with a strong population structuring (e.g. see examples in the *Bombus lapidarius* complex; Williams *et al.*, 2020). Contrastingly, information provided by the *COI* fragment can also be misleading in the opposite direction, with individuals belonging to phenotypically distinct groups sharing barely distinguishable or even identical sequences for this gene (Gibbs, 2018).

As an additional line of evidence for delimiting species, we have therefore studied the cephalic labial gland secretions (CLGSs) of male bumblebees, an eco-chemical trait involved in the nuptial behaviour of most species (Ayasse *et al.*, 2001; Baer, 2003). They are widely used for both species delimitation and intraspecific variation assessment in bumblebees (Lecocq *et al.*, 2011, 2015a,b; Brasero *et al.*, 2015, 2020; Martinet *et al.*, 2018) as they constitute a main signal for pre-copulatory recognition between conspecific taxa (Baer, 2003). As far as is known, each bumblebee species produces a specific blend of these *de novo*-synthesised aliphatic compounds (Ayasse & Jarau, 2014; Bergström, 2008; Valterová *et al.*, 2019), although possible limitations in the interpretation of CLGS has been hypothesised (but not tested yet) in the case of allopatric taxa (e.g. Williams *et al.*, 2019).

Finally, geometric morphometric analyses were used as a proxy to quantify the phenotypic divergence of the examined specimens. Wing shape has been an increasingly utilised discriminant character for insect taxonomy (e.g. Grimaldi &

Engel, 2006) and especially in bumblebee taxonomy (Dehon *et al.*, 2019), although limitations of this approach have also been discussed (Lecocq *et al.*, 2015a; Gérard *et al.*, 2020). Briefly, closely related but heterospecific taxa are not always expected to present significantly distinct wing shape. However, the technique is non-destructive and has the advantage to allow quantified morphological comparisons with older material from which no genetic sequences can be obtained (Dehon *et al.*, 2019; Gérard *et al.*, 2020).

Overall, all these traits (*COI*, CLGS, wing shape) present context-dependent benefits and limits (discussed in the study by Lecocq *et al.*, 2015a; Valterová *et al.*, 2019; Williams *et al.*, 2019; Gérard *et al.*, 2020), depicting the importance to integrate multiple lines of evidence to draw more robust and resilient conclusions about the taxonomic status of bumblebees (see below).

Genetic analyses

DNA preparation and phylogenetic inference for COI. We followed the same DNA extraction technique, PCR methodology, and primer pair Jerry/Pat as Lecocq et al. (2015a). We included all subspecies of Bombus hortorum in our analyses: Bombus hortorum hortorum (distributed in most of Europe), B. hortorum asturiensis (Tkalců) (restricted to Iberia and the Pyrenees) and B. hortorum jonghei Rasmont and Adamski (endemic to Corsica). Following the phylogeny of Cameron et al. (2007), we included in the analysis (i) the East Mediterranean Bombus portchinsky Radoszkowski; (ii) the three known subspecies of Bombus ruderatus (Fabricius): Bombus ruderatus ruderatus (distributed in Iberia), Bombus ruderatus autumnalis (Fabricius) (widespread across Europe) and Bombus ruderatus corsicola Strand (endemic to Corsica); and (iii) Bombus argillaceus (Scopoli). We chose B. consobrinus Dahlbom as an outgroup for our phylogenetic analysis. Detailed justifications of our primer choice and ingroup/outgroup selection are available in the Appendix 1 of the Supporting Information. A Bayesian phylogenetic inference analysis on the COI sequence was carried out under the GTR + G model, the most appropriate one according to MEGA-X (Kumar et al., 2018). The model was selected following the corrected Akaike information criterion (AICc). The parameters for the analysis and check for stationarity follow Ghisbain et al. (2020a,b) and subsequent mixed yule-coalescent model for species delimitation (bGMYC) follows Reid and Carstens (2012) (both analyses detailed in Appendix 2 of the Supporting Information). Newly obtained genetic sequences were deposited on GenBank (accession number MZ093449).

Semio-chemical trait analyses

CLGS were extracted from male heads by submerging the latter in 400 μ l of n-heptane, which was then stored at -40 °C prior to the analyses adapted from De Meulemeester *et al.* (2011). CLGS composition was determined by gas chromatographymass spectrometry (GC/MS; Appendix 3). All samples were analysed with a gas chromatograph-flame ionisation detector with the same chromatographic conditions as in GC/MS (Appendix 3 Supporting Information). We elaborated a data matrix as the alignment of each compound between samples performed with GCAligner 1.0 (Dellicour & Lecocq, 2013a,b). A clustering method computed with the unweighted pair-group method with average linkage (UPGMA) based on correlation distance matrices was used (R package ape; Legendre & Legendre, 2004; Paradis et al., 2004) to assess the divergence between the taxa. We transformed data $[\log (x + 1)]$ to reduce the great difference of abundance between highly and lowly concentrated compounds. P-values calculated by multiscale bootstrap resampling with 1.000.000 bootstrap replicates (significant branch support > 0.85) were used to assess the uncertainty in hierarchical clustering (R package pvclust; Suzuki & Shimodaira, 2011). A permutational multivariate analysis of variance (perMA-NOVA; R package vegan; Oksanen et al., 2011) using a distance matrix was performed to assess CLGS differentiation between taxa (including a total of 97 specimens, Supporting Information file 2). A pairwise multiple comparison test with Bonferroni correction (i.e. an adjustment of P-values to avoid type I errors) was performed when a significant difference was detected.

Phenotypic traits analyses

We used a dataset of 120 individuals including of 37 workers of Bombus hortorum [including the nominal subspecies (19 specimens), jonghei (6 specimens), and asturiensis (12 specimens)], 40 workers of Bombus ruderatus [including the nominal subspecies (20 specimens) and corsicola (20 specimens)], 19 workers of Bombus argillaceus, 15 workers of Bombus portchinsky and 9 workers of Bombus reinigiellus. The left forewing was photographed, and its shape and shape variation were captured and compared among individuals following Dehon et al. (2019) and Gérard et al. (2020) (complete protocol detailed in Appendix 4 of the Supporting Information). Prior to the assignment, shape variation within the reference dataset and species-level discrimination were assessed by linear discriminant analyses (LDA) on the projected aligned configuration of landmarks. LDA effectiveness for discriminating species was assessed by the percentage of individuals that were correctly classified to their original taxon [hit-ratio (HR)] with a leave-one-out cross-validation procedure based on the posterior probabilities (PPs) of assignment (Gérard et al., 2015). LDA effectiveness for discriminating species was assessed by the percentage of individuals that were correctly classified to their original taxon (HR) with a leave-one-out cross-validation procedure based on the posterior probabilities (PPs) of assignment (Gérard et al., 2015). We assessed the morphological affinity of Bombus reinigiellus based on the score in the predictive discriminant space of shapes. The aligned coordinates of the species from the reference dataset were used to calculate the LDA, including a posteriori B. reinigiellus in the computed LDA space as 'unknown' specimen and calculating its score. The Mahalanobis distance between 'unknown' and the group mean of each species in the dataset was used to estimate the assignment (Claude, 2008). PPs of assignment were calculated to confirm the assignment to each species.

Following the results of our taxonomic framework and of the analyses of wing shape (see results), we further explored the phenotypic differentiation of *reinigiellus* relative to all subspecies of *B. hortorum*. For each specimen of these taxa, we measured the intertegulae distance (ITD), a proxy of body size bumblebees and the size of the wing centroid as a proxy of wing size (Gérard *et al.*, 2020). We investigated whether the ratio wing centroid/ITD differed between *reinigiellus* and other *hortorum* subspecies, in other words if the size of the wings relative to the size of the overall body differed, as either an adaptation to conditions in higher altitude or genetic drift. Because the data did not follow a normal distribution, we applied a Mann–Whitney-Wilcoxon test to compare the two groups.

Decision framework and taxonomic status

Although definitions of species vary widely (e.g. Mayr, 1961; De Queiroz, 2007), we follow here the unified theoretical species concept, considering them as independently evolving lineages (De Queiroz, 2007). Because the traits examined as part of species delineation are expected to have diverged at different rates in the process of speciation, we applied an integrative taxonomic practice consisting in examining multiple lines of evidence in search of corroboration (Padial et al., 2010; Schlik-Steiner et al., 2010). Following this framework, a species status was conferred to a taxon that is (i) a reciprocally monophyletic lineage coalescent in COI supported by the Bayesian implementation of the general mixed yule-coalescent model for species delimitation (bGMYC) and (ii) significantly differentiated in its semiochemical traits (i.e. a distinct cluster with a significant result in perMANOVA and bootstrap supporting value > 0.85; Hillis & Bulls, 1993). Specific status was attributed only if those criteria converge. Although this strict framework could lead to an underestimation of species differentiation, it helps prevent the abuse of species status that could lead to 'taxonomic inflation'. Hair colour could not be used as an operational criterion for delineation at the species level as colour patterns can be shared by longseparated heterospecific bumblebee taxa (Ghisbain et al., 2020a; Williams et al., 2020). This character is also strongly variable at the intraspecific level (Martinet et al., 2018; Williams et al., 2019) and can be affected by several adaptive pressures at the local level such as Müllerian mimicry (Ezray et al., 2019; Ghisbain et al., 2020a). Similarly, sister species can show very similar wing shape (Gérard et al., 2020), and this trait is therefore used here to assess variation at a populationlevel only.

We recognise the concept of subspecies as an allopatric taxon not diverging in all lines of evidence but still presenting an original combination of traits, including morphological traits (e.g. wing shape and size, colour pattern) or ecological traits (e.g. unique trophic association with a particular resource, divergence in semio-chemical signals to attract a conspecific mate) (Hawlitschek *et al.*, 2012; Lecocq *et al.*, 2015a; Martinet *et al.*, 2019; Brasero *et al.*, 2021; Lhomme *et al.*, 2021). Our choice to formally recognise subspecies has the combined advantage of drawing attention to distinctive populations that vary in potentially adaptive traits and to prevent an artificial taxonomic inflation at the specific level (Isaac *et al.*, 2004). It also provides an effective short cut for future estimations of intraspecific diversity (Phillimore & Owens, 2006) and retains a legal taxonomic status as part of conservation plans (IUCN Standards and Petitions Subcommittee, 2019; CITES 2019), as already shown in other animals (Haig *et al.*, 2006; Storch *et al.*, 2006), including insects (New, 2011; Braby *et al.*, 2012) such as bumblebees (Cejas, 2021).

Reassessment of conservation status

Based on our taxonomic conclusions, we re-assessed the conservation status of the lineages of interest following the standardised protocol implemented by the International Union for Conservation of Nature (IUCN) (e.g. Nieto et al., 2014). The occurrence data and maps used in the analyses were generated using distribution data published in the study by Rasmont et al. (2015a) and Polce et al. (2018) enriched with significant Iberian data from Penado et al. (2016). Because the extinction risk of a species can vary widely in relation with the examined scale, we focused on two geographical scopes: (i) a continental-level for geographical Europe (see framework in Nieto et al., 2014) and (ii) a country-level analysis for Spain. At both spatial scales, we measured the area of occupancy (AOO) and extent of occurrence (EOO) of B. hortorum. The AOO is the measure of the area in which a species occurs and corresponds to the sum of the area of grids the species occupies. We defined square grids of $5 \text{ km} \times 5 \text{ km}$, as previously suggested for bumblebees (Drossart et al., 2019). The EOO is a measure of the geographic range size of a species and is calculated by drawing a convex hull, which is defined as the smallest polygon containing all the sites of occurrence and in which no internal angle exceeds 180 °C.

Results

Trait differentiation

The Bayesian inference conducted on the Genetic trait. COI (Fig. 2) coupled with the bGMYC partition (Supporting Information Figure 1) highlights the presence of four candidate species strongly supported by the posterior probabilities of the inference (>0.95) within our ingroup: Bombus argillaceus, B. hortorum (including reinigiellus from the Sierra Nevada, asturiensis from Iberia, the nominal subspecies hortorum and the Corsican jonghei), B. portchinsky and B. ruderatus (including the currently accepted subspecies autumnalis, corsicola and ruderatus). The taxon of interest, reinigiellus, is therefore unambiguously contained as a lineage within the widespread B. hortorum with no evidence of population structuring or reciprocal monophyly, and with individuals of reinigiellus presenting identical sequences to specimens belonging to the subspecies asturiensis from Iberia.

Semio-chemical trait. The results obtained from the analysis of CLGS are largely in agreement with those obtained with

Figure 2. Bayesian phylogeny including *reinigiellus* and its closely related taxa based on the mitochondrial barcode fragment of the cytochrome oxidase I (*COI*). Clade support values are the Bayesian posterior probabilities. [Color figure can be viewed at wileyonlinelibrary.com]

the phylogenetic analysis, revealing the presence of five lineages (*argillaceus*, *hortorum*, *portchinsky*, *ruderatus* and *corsicola*, but see Lecocq *et al.*, 2015 for the latter taxon differentiation)

in our ingroup (Fig. 3). The variability of the labial secretions of the taxon of interest, *reinigiellus*, falls unambiguously within the broader variation displayed by *B. hortorum*, with no

Figure 3. (a) Dendrogram of cephalic labial gland secretion (CLGS) differentiation within the subgenus *Megabombus*, including the taxon *reinigiellus* and its close relatives. This cluster was obtained by hierarchical clustering using an unweighted pair-group method with arithmetic mean (UPGMA) based on a Canberra matrix. The values near the nodes represent multiscale bootstrap resampling values. (b) PCA of CLGS differentiation within the subgenus *Megabombus* including the taxon *reinigiellus* and its close relatives. PC1, PC2 and PC3 are the first, the second and the third axes and explain 23.9%, 15.7% and 8.6% of the variance, respectively. [Color figure can be viewed at wileyonlinelibrary.com]

evidence of population structuring. All *hortorum* taxa including *reinigiellus* share the same main compounds: the nonadec-9-ène (17.63–40.80%) (Supporting Information file 2). PerMANOVA test confirms that *reinigiellus* is not significantly different from other *hortorum* taxa (F = 0.87, P = 0.65).

Phenotypic trait. Based on the leave-one-out cross validation procedure, all taxa (B. argillaceus, B. hortorum, B. ruderatus, B. reinigiellus, B. portchinsky) were correctly separated. Only one of the wings of *Bombus reinigiellus* was attributed to *Bombus hortorum*. Four taxa had HRs of 75% or higher: *B. argillaceus* (HR = 78.95%), *B. hortorum* (75.68%), *B. portchinsky* (80%) and *B. ruderatus* (85%). *Bombus reinigiellus* specimens were less correctly identified, with a hit ratio of 66.67% (Supporting Information file 3). In addition, the wing centroid size/ITD ratio was significantly different between *reinigiellus* and *hortorum* sspp. (W = 235, *P*-value = 0.0067), with *reinigiellus* presenting a larger body relative to wing size relative

Figure 4. Wing differentiation of *reinigiellus* compared to other subspecies of *hortorum*. (a) Left: ordination of the studied taxa (total = 120 specimens) along the two first axes of the linear discriminant analysis (explaining 40.48% and 26.33% of the variance, respectively). Right: ordination of the studied taxa (total = 120 specimens) along the first and third axes of the linear discriminant analysis (explaining 40.48% and 19.21% of the variance, respectively). (b) Difference between *hortorum* sspp. (black) and *reinigiellus* (red) in wing shape. (c) Difference in wing centroid size/ITD ratio between *hortorum* sspp. (n = 33) (black) and *reinigiellus* (red) (n = 9). [Color figure can be viewed at wileyonlinelibrary.com]

to all subspecies of *hortorum* (Fig. 4d; Supporting Information file 4).

Decision framework of taxonomic status

Type revision and taxonomic decision. We revised the holotype (and paratypes) of *B. reinigiellus* which enabled an unambiguous identification of our freshly collected specimens with the taxon reinigiellus (Fig. 1). Integrative evidence based on the congruence of the examined traits (*COI*, CLGS and wing shape) indicates that the taxon reinigiellus (Rasmont, 1983) is contained within *B. hortorum* (L. 1761), the latter bearing year priority for the specific epithet. The taxon reinigiellus, being infraspecific to that of hortorum, can therefore be formally used

as a novel combination as a subspecific epithet applied to the allopatric population of the Spanish Sierra Nevada, *Bombus hortorum reinigiellus* **comb. nov.** (see discussion).

IUCN assessment

The AOO and EOO of *B. hortorum* both at the continental and Spanish scale are available in the Appendix 5 of the Supporting Information. The inclusion of *reinigiellus* in *B. hortorum* at the European scale increases the EOO by more than 70,000 km² (Fig. 5). At the Spanish scale, the inclusion of *reinigiellus* increases the EOO by more than 48,000 km². According to the criteria of the IUCN, the conservation status of *B. hortorum* is *Least Concern* both at the continental and Spanish scales. At a

Figure 5. (a) Lateral view of the head of *Bombus reinigiellus* (Rasmont, 1983), revised here as *B. hortorum reinigiellus*, a subspecies of the widespread garden bumblebee *B. hortorum* (L. 1761). Photo credit P. Rasmont. (b) Occurrence data for *Bombus hortorum* in the Iberian Peninsula (data records belonging to *reinigiellus* are outlined with a rectangle). (c) Occurrence data for *B. hortorum* in Europe (*sensu* Nieto *et al.* 2014) with a polygon corresponding to its EOO. [Color figure can be viewed at wileyonlinelibrary.com]

subspecific level and according to our conservation framework (5 km cell width of AOO around each record), the conservation of *reinigiellus* follows the following IUCN criteria: B1 (small EOO) including B1a (severely fragmented) + B1b(iii) (continuing decline in area, extent and/or quality of habitat); B2 (small AOO) including B2a (severely fragmented) + B2b(iii) (continuing decline in area, extent and/or quality of habitat); and D (very small or restricted population). The lineage *reinigiellus* therefore constitutes an *Endangered* population.

Discussion

Trait divergence

Evidence integrating genetic, morphometric and semiochemical data does not support the species status originally conferred to the taxon reinigiellus. Our integrative framework unambiguously indicates its conspecificity with the widespread West Palearctic bumblebee species B. hortorum (Fig. 1). Based on our combination of markers, studied reinigiellus individuals do not constitute a coalescent based on the COI marker (and subsequently cannot be supported by the bGMYC analysis), are not significantly differentiated in their semio-chemical secretions, but do however present a divergent wing phenotype. The lack of differentiation in the studied genetic marker might indicate that the population *reinigiellus* has only been isolated recently. Conversely, given the role of CLGS in the pre-copulatory recognition system of bumblebees (Ayasse & Jarau, 2014) and their subsequent usefulness in species delineation (Lecocq et al., 2015; Martinet et al., 2018, 2019), the similarity of the latter compounds between *hortorum* and *reinigiellus* could imply maintained pre-copulative attraction between both taxa (Valterová *et al.*, 2019). Finally, our analyses of wing morphometrics support a differentiation in the wings of *reinigiellus* and showed that *reinigiellus* has significantly smaller wings relative to its overall body size (Fig. 4). Although this observation deserves to be further investigated at larger scales and across a larger set of populations, this morphological differentiation could represent either a phenotypic adaptation of the *reinigiellus* population to compensate for a lower air pressure and temperature in the high altitudes of the Sierra Nevada compared to other *hortorum* taxa living in lower elevations (Montejo-Kovacevich *et al.*, 2019), or a genetic drift following a long (near-) isolation of this population from other *hortorum* populations.

Taxonomic status

In bumblebees, a common practise to allow the recognition of similarly differentiated taxa is to formally designate subspecies. The level of differentiation of these subspecies can vary widely, ranging from (i) no genetic or semio-chemical significant differentiation (e.g. based on allopatry and colour pattern, Leccoq *et al.* 2015); (ii) a low genetic differentiation accompanied with a dialectic semio-chemical signal (e.g. Brasero *et al.*, 2020, 2021); (iii) a significant genetic differentiation with a dialectic semio-chemical signal (Martinet *et al.*, 2018, but see Williams *et al.*, 2019). The present taxon *reinigiellus* falls in the first case where the taxon is isolated, presents tenuous but extant morphological and colour differences (Rasmont, 1983; Castro, 1988) and a distinct wing phenotype and a unique wing size/ITD ratio

but shows no molecular differentiation based on our two other traits (*COI* and CLGS). Lack of a such a distinctive molecular differentiation is not surprising here given the life history of the taxon *reinigiellus* (see below), both in terms of mitochondrial and CLGS divergence. In the light of our data, we therefore formally confer a subspecies status to this high-altitude population of *Bombus hortorum* from the Sierra Nevada, *Bombus hortorum reinigiellus* comb. nov.

Life history and biogeography

The differentiation of B. hortorum reinigiellus relative to the widespread continental B. hortorum hortorum is reminiscent of the case of the insular B. hortorum jonghei from Corsica. In line with reinigiellus, the Corsican population of B. hortorum is geographically isolated, phenotypically distinct, has raised controversy in the past over its taxonomic status, and ended up being part of the subspecific variation of the polytypic B. hortorum (Lecocq et al., 2015a). The present phenotypic differentiation of reinigiellus can most likely be attributed to the climatic oscillations and subsequent population shifts of the Quaternary in Europe (Castro, 1988). Colder periods might have triggered the southward expansion of B. hortorum, allowing the species to colonise the meridional part of the Iberian Peninsula. Later, when the climate warmed up, southernmost populations would have shifted towards the higher altitudes of the Sierra Nevada, following suitable climatic montane conditions. Progressively, the hortorum populations that were not able to reach higher altitudes would have disappeared from the southern part of Iberia to remain mostly in the colder mountain conditions in the north. This extended isolation of the hortorum population of the Sierra Nevada could explain its divergent phenotype through genetic and phenotypic drift, probably in combination with adaptations with the high-altitude conditions. Such dynamics of post-glacial isolation, often leading to differentiation or speciation (Avise, 2000; Hewitt, 2004), have previously been suggested in separate bumblebee lineages across several European mountain ranges (Reinig, 1937; Martinet et al., 2018) and are likely to explain the unique phenotypic differentiation of *reinigiellus*.

Overall, the present case illustrates the need to focus on allopatric, geographically restricted and phenotypically unique populations to fully comprehend both the life history of widespread, polytypic taxa (Avise, 2000; Hewitt, 2004). Understanding such phenotypic radiations driven by climatic oscillations is of central importance given that these phenotypic divergences explain much of the taxonomic confusion that have and continue to impede our accurate interpretation of the phylogenetic relationships of polymorphic species and relictual populations (Reinig, 1937; Martinet *et al.*, 2018; Williams *et al.*, 2020).

Conservation implications

Before this study, the taxon *reinigiellus* was regarded as endemic to Spain, and as the rarest and most localised bumblebee species in Europe (Rasmont *et al.*, 2015a) and was listed as an Endangered species in the last Red List of European bees (Nieto *et al.*, 2014). The assessment of Verdú and Galante (2005) included *reinigiellus* and classified it as *Endangered* in Spain, in line with the later assessment of Nieto *et al.* (2014) and therefore deserving of conservation intervention as both a threatened European and Spanish endemic species.

By pooling the *reinigiellus* records with those of *hortorum* in our conservation status assessments, we formally indicate that reinigiellus must be now considered as a peripheral population of a species (B. hortorum) that is widespread across Europe, including in the Iberian Peninsula, common to abundant in most of its range, polytypic across its range, especially in insular conditions and categorised Least Concern both at the continental and Spanish scales. However, although reinigiellus is not sufficiently well differentiated to hold a species status, its original combination of potentially adaptive morphological characters and colour pattern highlights the uniqueness of this restricted taxon, which represents one of the highest altitude populations of B. hortorum throughout its distribution (Rasmont et al., 2015a). In addition to its alpine ecology in dry steppes (which is not the case for any other hortorum population), reinigiellus is an important visitor of Aconitum (Ranunculaceae) species (Rasmont, 1983; Castro, 1988; G. Ghisbain & D. Cejas, field observations). Aconitum presents large, morphologically complex flowers that are pollinated almost exclusively by bumblebees (Thøstesen & Olesen, 1996; Ponchau et al., 2006, Gosselin et al., 2013). Two Aconitum species are found in the Sierra Nevada, A. burnatii and A. vulparia neapolitanum (Lorite, 2016), both of which are rare within Andalucía and are regionally assessed as Vulnerable and Near Threatened, respectively (Blanca et al., 2011). Even if the taxonomic status of these Aconitum themselves is still under discussion (Raab Straube et al., 2014), it is clear that in Andalucía, Aconitum vulparia neapolitanum populations are restricted to high elevations where they are probably pollinated almost exclusively by reinigiellus, as one of the only long tongued bumblebee found at this altitude in southern Europe (Rasmont et al., 2015a). Additional field work and pollen load analyses would be needed to formally quantify the strength of the interaction between reinigiellus and Aconitum spp. in their shared ranges, and to assess whether this interaction might be endangered in near future by ongoing global changes.

Putting aside the level of differentiation and subsequent taxonomic status of reinigiellus, it faces several threats and possesses several inherent traits that render it susceptible to global change and potentially in need of conservation. Firstly, the taxon has a small total distribution (IUCN criteria B2, AOO <500 km²), implying populations subject to isolation, as well as a weak dispersal potential due to its high-altitude ecology. Furthermore, its natural habitat is experiencing strong anthropogenic disturbance, leading to the fragmentation and destruction of numerous pieces of land where the taxon is already rare [IUCN criteria B 1b-2b (iii)], with its host plants becoming increasingly scarce (Ornosa & Ortiz-Sánchez, 2009). Much can be done to favour the resilience of these populations to future habitat and climate changes, and there is a growing consensus towards ensuring the spatial and temporal availability of sufficient floral cover and composition, a critical factor in sustaining bumblebee communities (Winfree et al., 2011; Folschweiller et al., 2019; Drossart et al., 2019). Diet quality and quantity are two of the

most fundamental aspects of the health and development of bumblebee colonies (Vanderplanck *et al.*, 2014, 2019; Moerman *et al.*, 2016) and their disruption is associated with severe patterns of decline at local and global scales (Williams, 1989; Williams & Osborne, 2009; Vray *et al.*, 2017, 2019). Consequently, we encourage the implementation of local conservation and mitigation strategies that ensure and continuously monitor the availability of bumblebee requirements within their flight range (resource plants) and restore small-scale habitat elements that provide targeted floral resources notably at the highest altitudes of the mountain chains in order to ensure the maintenance of population connectivity.

Overall, the present study illustrates the importance of establishing rigorous taxonomic foundations for conservation assessments in order to provide useful decision frameworks for policymakers and conservation organisations. These reassessments must incorporate a rigorous knowledge of unique ecological traits and interactions that render some populations worthy of interest for conservation purposes. Altogether, these efforts should eventually lead to allocation of the best contextdependent funding and management efforts for endangered, geographically restricted and endemic taxa.

Authors' contributions

G.G. designed the study and led the writing of the paper. B.M. and T.J.W. were involved in the writing and conceived important ideas for the study. G.G., B.M., T.J.W., K.P., D.C., and A.M. compiled critical data for the study. G.G., B.M., M.G. and I.V. analysed and interpreted the data. P.R. and D.M. contributed to reagents and materials. All authors discussed the results, edited and approved the content of the manuscript.

Acknowledgements

The authors are grateful to Laurence Packer, Christophe Praz and to an anonymous reviewer for their constructive comments that helped improve the manuscript. The authors thank Andreia Penado for kindly sharing bumblebee records from the Iberian Peninsula, and Stefan Schmidt from the ZSM for lending the type series of *reinigiellus*. G.G. and K.P. were funded by a doctoral grant 'Aspirant' from the Fonds National de la Recherche Scientifique (F.R.S.-FNRS, Brussels, Belgium); B.M. and T.W. by a postdoctoral grant from the F.R.S.-FNRS; D.C., M.G. and D.M. by the EOS project "CLIPS" (n°3094785).

DATA AVAILABILITY STATEMENT

All data supporting this manuscript are available as supplementary materials.

Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Appendix 1. Detailed justifications of our primer choice and ingroup/outgroup selection (Word document).

Appendix 2. Detailed protocol for the Bayesian inference and species delineation test (Word document).

Appendix 3. Detailed protocol for the analysis of the cephalic labial gland secretions (Word document).

Appendix 4. Detailed protocol for the analysis of wing shape (Word document).

Appendix 5. Reassessment of the conservation status of *Bombus hortorum* at the continental and Spanish levels, including or not the subspecies *reinigiellus* from the Sierra Nevada (Spain).

Supplementary file 1 Summary of the sampling for both *COI* and wing shape analyses (Excel sheet).

Supplementary file 2 Matrix used for the CLGS statistical analyses (Excel sheet).

Supplementary file 3 Matrix of the Leave-One-Out analysis for wing shape (Excel sheet).

Supplementary file 4 Data for the analysis of relative wing (Excel sheet).

Supplementary figure 1 Species recognition pairwise matrix based on the maximum clade credibility tree obtained from BEAST, including *reinigiellus* and its consubgeneric closely related sister taxa.

References

- Avise, J.C. (2000) Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge, Massachusetts.
- Ayasse, M. & Jarau, S. (2014) Chemical ecology of bumble bees. Annual Review of Entomology, 59, 299–319.
- Ayasse, M., Paxton, R.J. & Tengö, J. (2001) Mating, behaviour and chemical communication in the order Hymenoptera. *Annual Review* of Entomology, 46, 31–78.
- Baer, B. (2003) Bumblebees as model organisms to study male sexual selection in social insects. *Behavavioral Ecology and Sociobiology*, 54, 521–533.
- Baker, A.J., Tavares, E.S. & Elbourne, R.F. (2009) Countering criticisms of single mitochondrial DNA gene barcoding in birds. *Molecular Ecology Resources*, 9(Supplement 1), 257–268.
- Barea-Azcón, J.M., Ballesteros-Duperón, E. & Moreno, D. (eds) (2008) Libro Rojo de los Invertebrados de Andalucía, *Consejería de Medio Ambiente*. Junta de Andalucía, Sevilla.
- Bergström, L.G. (2008) Chemical communication by behaviour-guiding olfactory signals. *Chemical Communication*, 2008, 3959–3979.
- Bilz, M., Kell, S.P., Maxted, N. & Lansdown, R.V. (2011) European Red List of Vascular Plants. Publications Office of the European Union, Luxembourg.
- Blanca, B., Cabezudo, M., Cueto, C., Salazar C. & Morales Torres, C. (2011) Flora Vascular de Andalucía Oriental. Universidades de Almería, Granada, Jaén y Málaga, Granada, 1751 pp.
- Braby, M.F., Eastwood, R. & Murray, N. (2012) The subspecies concept in butterflies: has its application in taxonomy and conservation

biology outlived its usefulness? *Biological Journal of the Linnean Society*, **106**, 699–716.

- Brasero, N., Ghisbain, G., Lecocq, T., Michez, D., Valterová, I., Biella, P., Monfared, A., Williams, P.H., Rasmont, P. & Martinet, B. (2021) Resolving the species status of overlooked West-Palaearctic bumblebees. *Zoologica Scripta*.
- Brasero, N., Martinet, B., Michez, D., Lecocq, T., Valterová, I. & Rasmont, P. (2020) Taxonomic revision of the *Sylvarum* group of bumblebees using an integrative approach. *Systematics and Biodiversity*, **18**, 12–28.
- Brasero, N., Martinet, B., Urbanová, K., Valterová, I., Torres, A., Hoffmann, W., Rasmont, P. & Lecocq, T. (2015) First chemical analysis and characterization of the male species-specific cephalic labial-gland secretions of south American bumblebees. *Chemistry & Biodiversity*, 12, 1535–1546.
- Cameron, S.A., Hines, H.M. & Williams, P.H. (2007) A comprehensive phylogeny of the bumble bees (*Bombus*). *Biological Journal of the Linnean Society*, **91**, 161–188.
- Cameron, S.A., Lozier, J.D., Strange, J.P., Koch, J., Cordes, N., Solter, L.F. & Griswold, T.L. (2011) Patterns of widespread decline in North American bumble bees. *Proceedings of the National Academy of Scienceof the United States of America*, **108**, 662–667.
- Cameron, S.A. & Sadd, B.M. (2020) Global trends in bumble bee health. Annual Review of Entomology, 65, 209–232.
- Castro, L. (1987) Nuevas citas de tres Bombinae (Hym. Apidae) de la Penínsùla Ibérica. *Boletín de la Asociación Española de Entomología*, **11**, 413.
- Castro, L. (1988) Sobre Bombus (Megabombus) reinigiellus (Rasmont, 1983) (Hym., Apidae). Boletín de la Asociación española de Entomología, 12, 281–289.
- Cejas, D. (2021). Conservation genetics of pollinators: situation of the bumblebee species *Bombus terrestris* in the Iberian Peninsula. Doctoral thesis, University of Murcia, Spain, 204.
- CITES (2019) Convention on international trade in endangered species of wild flora and fauna. Accessed on January 2020 <http://www.cites.org/>
- Claude, J. (2008) *Morphometrics with R*, pp. p. 317. Springer, New York, New York.
- De Meulemeester, T., Gerbaux, P., Boulvin, M., Coppée, A. & Rasmont, P. (2011) A simplified protocol for bumble bee species identification by cephalic secretion analysis. *Insectes Sociaux*, 58, 227–236.
- De Queiroz, K. (2007) Species concepts and species delimitation. Systematic Biology, 56, 879–886.
- Dehon, M., Engel, M.S., Gérard, M., Aytekin, A.M., Ghisbain, G., Williams, P.H., Rasmont, P. & Michez, D. (2019) Morphometric analysis of fossil bumble bees (Hymenoptera, Apidae, Bombini) reveals their taxonomic affinities. *Zookeys*, **891**, 71–118.
- Dellicour, S. & Lecocq, T. (2013a) GCALIGNER 1.0 and GCKOVATS 1.0 – Manual of a Software Suite to Compute a Multiple Sample Comparison Data Matrix from Eco-chemical Datasets Obtained by Gas Chromatography. University of Mons, Mons.
- Dellicour, S. & Lecocq, T. (2013b) GCALIGNER 1.0: an alignment program to compute a multiple sample comparison data matrix from large eco-chemical datasets obtained by GC. *Journal of Separation Science*, 36, 3206–3209.
- Drossart, M., Rasmont, P., Vanormelingen, P., Dufrêne, M., Folschweiller, M., Pauly, A., Vereecken, N.J., Vray, S., Zambra, E., D'Haeseleer, J. & Michez, D. (2019) Belgian Science Policy 2018, BRAIN-be - (Belgian Research Action through Interdisciplinary Networks). (ed. by Belgian Red List of Bees), pp. p. 140. Presse universitaire de l'Université de Mons, Mons.

- Ezray, B.D., Wham, D.C., Hill, C. & Hines, H.M. (2019) Unsupervised machine learning reveals mimicry complexes in bumble bees occur along a perceptual continuum. *Proceedings of the Royal Society of London B*, 286, 20191501.
- Folschweiller, M., Drossart, M., D'Haeseleer, J., Marescaux, Q., Rey, G., Rousseau-Piot, J.S., Barbier, Y., Dufrêne, M., Hautekeete, N., Jacquemin, F., Lemoine, G., Michez, D., Piquot, Y., Quevillart, R., Vanappelghem, C. & Rasmont, P. (2019) *Plan d'action* transfrontalier en faveur des pollinisateurs sauvages. Projet Interreg VSAPOLL – Sauvons nos pollinisateurs – Samenwerken voor pollinators, pp. p. Mons, Belgium: Université de Mons, 145.
- Gérard, M., Martinet, B., Dehon, M., Rasmont, P., Williams, P.H. & Michez, D. (2020) The utility of wing morphometrics for assigning type specimens to cryptic bumblebee species. *Systematic Entomology*, 45(4), 849–856.
- Gérard, M., Michez, D., Fournier, D., Maebe, K., Smaaghe, G., Biesmeijer, J. & De Meulemeester, T. (2015) Discrimination of haploid and diploid males of *Bombus terrestris* (Hymenoptera; Apidae) based on wing shape. *Apidologie*, **46**, 644–653.
- Ghisbain, G., Lozier, J.D., Rahman, S.R., Ezray, B.D., Tian, L., Ulmer, J. M., Heraghty, S.D., Strange, J.P., Rasmont, P. & Hines, H.M. (2020a) Substantial genetic divergence and lack of recent gene flow support cryptic speciation in a colour polymorphic bumble bee (*Bombus bifarius*) species complex. *Systematic Entomology*, **45**(3), 635–652.
- Ghisbain, G., Michez, D., Marshall, L., Rasmont, P. & Dellicour, S. (2020b) Wildlife conservation strategies should incorporate both taxon identity and geographical context - further evidence with bumblebees. *Diversity and Distributions*, 26(12), 1741–1751.
- Gibbs, J. (2018) DNA barcoding a nightmare taxon: assessing barcode index numbers and barcode gaps for sweat bees. *Genome*, 61, 21–31.
- Gosselin, M., Michez, D., Vanderplanck, M., Roelants, D., Glauser, G. & Rasmont, P. (2013) Does Aconitum septentrionale chemically protect floral rewards to the advantage of specialist bumblebees? Impact of toxic rewards on visitors. *Ecological Entomology*, 38, 400–407.
- Grimaldi, D.A. & Engel, M.S. (2006) Evolution of the Insects. Repr. Cambridge Univ, Press, Cambridge.
- Haig, S.M., Beever, E.A., Chambers, S.M., Draheim, H.M., Dugger, B. D., Dunham, S., Elliott-Smith, E., Fontaine, J.B., Kesler, D.C., Knaus, B.J., Lopes, I.F., Loschl, P., Mullins, T.D. & Scheffield, L. M. (2006) Taxonomic considerations in listing subspecies under the U.S. Endangered Species Act. *Conservation Biology*, **20**(6), 1844– 1850.
- Hawlitschek, O., Nagy, Z.T. & Glaw, F. (2012) Island evolution and systematic revision of Comoran snakes: why and when subspecies still make sense. *PLoS One*, 7, e42970.
- Hewitt, G.M. (2004) Genetic consequences of climatic oscillations in the quaternary. *Philosophical Transactions of the Royal Society of London B*, **359**, 183–195.
- Hey, J., Waples, R.S., Arnold, M.L., Butlin, R.K. & Harrison, R.G. (2003) Understanding and confronting species uncertainty in biology and conservation. *Trends in Ecology and Evolution*, **18**, 597–603.
- Hillis, D.M. & Bull, J.J. (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. *Systematic Biology*, **42**, 182–192.
- Hines, H.M. & Williams, P.H. (2012) Mimetic colour pattern evolution in the highly polymorphic *Bombus trifasciatus* (Hymenoptera: Apidae) species complex and its comimics. *Zoological Journal of the Linnean Society*, **166**, 805–826.
- Isaac, N.J.B., Mallet, J. & Mace, G.M. (2004) Taxonomic inflation: its influence on macroecology and conservation. *Trends in Ecology and Evolution*, **19**, 464–469.

- IUCN Standards and Petitions Subcommittee (2019) Guidelines for using the IUCN Red List Categories and Criteria, Version 14. Prepared by the Standards and Petitions Subcommittee of the IUCN Species Survival Commission. http://jr.iucnredlist.org/documents/ RedListGuidelines.pdf (accessed May 2020)
- Joar Hegland, S. & Totland, Ø. (2008) Is the magnitude of pollen limitation in a plant community affected by pollinator visitation and plant species specialisation levels? *Oikos*, **117**, 883–891.
- Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGAX: molecular evolutionary genetics analysis across computing platforms. *Molecular Biology & Evolution*, **35**, 1547–1549.
- Lecocq, T., Brasero, N., De Meulemeester, T., Michez, D., Dellicour, S., Lhomme, P., de Jonghe, R., Valterová, I., Urbanová, K. & Rasmont, P. (2015a) An integrative taxonomic approach to assess the status of Corsican bumblebees: implications for conservation: Integrative taxonomy and conservation of insular bumblebees. *Animal Conservation*, 18, 236–248.
- Lecocq, T., Dellicour, S., Michez, D., Dewulf, A., De Meulemeester, T., Brasero, N., Valterová, I., Rasplus, J.-Y. & Rasmont, P. (2015b) Methods for species delimitation in bumblebees (Hymenoptera, Apidae, *Bombus*): towards an integrative approach. *Zoologica Scripta*, 44, 281–297.
- Lecocq, T., Lhomme, P., Michez, D., Dellicour, S., Valterová, I. & Rasmont, P. (2011) Molecular and chemical characters to evaluate species status of two cuckoo bumblebees: *Bombus barbutellus* and *Bombus maxillosus* (Hymenoptera, Apidae, Bombini). *Systematic Entomology*, **36**, 453–469.
- Legendre, P. & Legendre, L. (2004) Numerical ecology, developments in environmental modelling 20, 2nd Edn, pp. p. 853. Elsevier Scientific Publication Company, Amsterdam, the Netherlands.
- Lhomme, P., Williams, S.D., Ghisbain, G., Martinet, B., Gérard, M. & Hines, H.M. (2021) Diversification pattern of the widespread Holarctic cuckoo bumble bee *Bombus flavidus* (Hymenoptera: Apidae): the East Side Story. *Insect Systematics* and Diversity, 5(2), 1–15.
- Lorite, J. (2016) An updated checklist of the vascular flora of Sierra Nevada (SE Spain). *Phytotaxa*, 261(1), 1–57.
- Mace, G.M. (2004) The role of taxonomy in species conservation. *Philosophical Transactions of the Royal Society B*, **359**, 711–719.
- Martinet, B., Dellicour, S., Ghisbain, G., Przybyla, K., Zambra, E., Lecocq, T., Boustani, M., Baghirov, R., Michez, D. & Rasmont, P. (2021) Global effects of extreme temperatures on wild bumblebees. *Conservation Biology*. https://doi.org/10.1111/cobi.13685.
- Martinet, B., Lecocq, T., Brasero, N., Biella, P., Urbanová, K., Valterová, I., Cornalba, M., Gjershaug, J.O., Michez, D. & Rasmont, P. (2018) Following the cold: geographical differentiation between interglacial refugia and speciation in the arcto-alpine species complex Bombus monticola (Hymenoptera: Apidae). Systematic Entomology, 43, 200–217.
- Martinet, B., Lecocq, T., Brasero, N., Gerard, M., Urbanová, K., Valterová, I., Gjershaug, J.O., Michez, D. & Rasmont, P. (2019) Integrative taxonomy of an arctic bumblebee species complex highlights a new cryptic species (Apidae: Bombus). *Zoological Journal of the Linnean Society*, **187**, 599–621.

Mayr, E. (1961) Cause and effect in biology. Science, 134, 1501–1506.

- Michener, C.D. (2007) *The Bees of the World*, 2nd Edn. Johns Hopkins Univ, Press, Baltimore.
- Michez, D., Rasmont, P., Terzo, M. & Vereecken, N.J. (2019) Bees of Europe, pp. p. 548. N.A.P. Editions, Verrières-le-Buisson, France.
- Moerman, R., Vanderplanck, M., Roger, N., Declèves, S., Wathelet, B., Rasmont, P., Fournier, D. & Michez, D. (2016) Growth rate of bumblebee larvae is related to pollen amino acids. *Journal of Economic Entomology*, **109**, 25–30.

- Montejo-Kovacevich, G., Smith, J.E., Meier, J.I., Bacquet, C.N., Whiltshire-Romero, E., Nadeau, N.J. & Jiggins, C.D. (2019) Altitude and life-history shape the evolution of *Heliconius* wings. *Evolution*, 73, 2436–2450.
- New. (2011) Butterfly Conservation in South-Eastern Australia: Progress and Prospects. Springer, Dordrecht.
- Nieto, A., Roberts, S.P.M., Kemp, J., Rasmont, P., Kuhlmann, M., García Criado, M., Biesmeijer, J.C., Bogusch, P., Dathe, H.H., De la Rúa, P., De Meulemeester, T., Dehon, M., Dewulf, A., Ortiz-Sánchez, F.J., Lhomme, P., Pauly, A., Potts, S.G., Praz, C., Quaranta, M., Radchenko, V.G., Scheuchl, E., Smit, J., Straka, J., Terzo, M., Tomozii, B., Window, J. & Michez, D. (2014) *European Red List of Bees.* Publications Office, Luxembourg.
- Oksanen, F.J., Blanchet, G., Kindt, R. Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M. H.H., Szoecs, E. & Wagner, H. (2011) Tertiary Vegan: Community Ecology Package. Accessed on January 2020 https://cran.r-project.org
- Ornosa, C. & Ortiz-Sánchez, F.J. (2009) Bombus (Megabombus) reinigiellus (Rasmont 1983). Atlas de los Invertebradosde España (Especies En Peligro Crítico y En Peligro). (ed. by J.R. Verdú and E. Galante), pp. p. 156–159.Dirección general para la Biodiversidad, Ministerio de MedioAmbiente, Madrid, España.
- Ortiz-Sánchez, F.J., Aguado Martín, L.Ó. & Ornosa Gallego, C. (2018) Bee diversity in Spain. Population trend and conservation measures (Hymenoptera, Apoidea, Anthophila). *ECOS*, 27, 3–8.
- Ortiz-Sánchez, F.J. & Ornosa, C. (2004) Bombus (Megabombus) reinigiellus (Rasmont 1983). Biodiversidad y conservación de Invertebrados continentalesde Andalucía: especies protegidas y otras especies amenazadas. (ed. by E. Ballesteros-Duperón and J.M. Barea-Azcón), pp. p. 125–128. Consejería de Medio Ambiente, Junta de Andalucía, Granada, España.
- Padial, J.M., Miralles, A., De la Riva, I. & Vences, M. (2010) The integrative future of taxonomy. *Frontiers in Zoology*, 7, 16.
- Paradis, E., Claude, J. & Strimmer, K. (2004) APE: analyses of phylogenetics and evolution in R language. *Bioinformatics*, 20, 289–290.
- Penado, A., Rebelo, H. & Goulson, H. (2016) Spatial distribution modelling reveals climatically suitable areas for bumblebees in undersampled parts of the Iberian Peninsula. *Insect Conservation and Diversity*, 9, 391–401.
- Phillimore, A.B. & Owens, I.P.F. (2006) Are subspecies useful in evolutionary and conservation biology? *Proceedings of the Royal Society B*, 273, 1049–1053.
- Polce, C., Maes, J., Rotllan-Puig, X., Michez, D., Castro, L., Cederberg, B., Dvorak, L., Fitzpatrick, Ú., Francis, F., Neumayer, J., Manino, A., Paukkunen, J., Pawlikowski, T., Roberts, S., Straka, J. & Rasmont, P. (2018) Distribution of bumblebees across Europe. OE, 3, e28143.
- Ponchau, O., Iserbyt, S., Verhaeghe, J.-C. & Rasmont, P. (2006) Is the caste-ratio of the oligolectic bumblebee *Bombus gerstaeckeri* Morawitz (Hymenoptera: Apidae) biased to queens? *Annales de la Société Entomologique de France*, **42**, 207–214.
- Potts, S.G., Imperatriz-Fonseca, V., Ngo, H.T., Aizen, M.A., Biesmeijer, J.C., Breeze, T.D., Dicks, L.V., Garibaldi, L.A., Hill, R., Settele, J. & Vanbergen, A.J. (2016) Safeguarding pollinators and their values to human well-being. *Nature*, 540(7632), 220–229.
- Raab-Straube, E., von Hand, R., Hörandl, E. & Nardi, E. (2014) Ranunculaceae. Published on the Internet .
- Rasmont, P. (1983) Catalogue commenté des bourdons de la région ouest-paléarctique (Hymenoptera, Apidae, Bombinae). Notes fauniques de Gembloux, 7, 1–72.
- Rasmont, P., Franzen, M., Lecocq, T., Harpke, A., Roberts, S., Biesmeijer, K., Castro, L., Cederberg, B., Dvorak, L., Fitzpatrick, U., Gonseth, Y., Haubruge, E., Mahe, G., Manino, A., Michez, D.,

14 Guillaume Ghisbain et al.

Neumayer, J., Odegaard, F., Paukkunen, J., Pawlikowski, T., Potts, S., Reemer, M., Settele, J., Straka, J. & Schweiger, O. (2015a) Climatic risk and distribution atlas of European Bumblebees. *Biorisk*, **10**, 1–236.

- Rasmont, P., Roberts, S., Cederberg, B., Radchenko, V., Michez, D. (2015b) Bombus reinigiellus. The IUCN Red List of Threatened Species 2015: e.T18528848A57369359. https://doi.org/10.2305/IUCN. UK.2015-1.RLTS.T18528848A57369359.en.
- Reid, N.M. & Carstens, B.C. (2012) Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. *BMC Evolutionary Biology*, **12**, 196.
- Reinig, W.F. (1937) Die Holarktis. Ein Beitrag zur diluvialen und alluvialen Geschichte der Cirkumpolaren. Faunen- und Florengebiete, Gustav Fischer, Jena.
- Rollin, O., Vray, S., Dendoncker, N., Michez, D., Drufrêne, M. & Rasmont, P. (2020) Drastic shifts in the Belgian bumblebee community over the last century. *Biodiversity and Conservation*, 29, 2553–2573.
- Sánchez-Bayo, F. & Wyckhuys, K.A.G. (2019) Worldwide decline of the entomofauna: A review of its drivers. *Biological Conservation*, 232, 8–27.
- Scheffers, B.R., De Meester, L., Bridge, T.C.L., Hoffmann, A.A., Pandolfi, J.M., Corlett, R.T., Butchart, S.H.M., Pearce-Kelly, P., Kovacs, K.M., Dudgeon, D., Pacifici, M., Rondinini, C., Foden, W. B., Martin, T.G., Mora, C., Bickford, D. & Watson, J.E.M. (2016) The broad footprint of climate change from genes to biomes to people. *Science*, **354**, aaf7671.
- Schlick-Steiner, B.C., Steiner, F.M., Seifert, B., Stauffer, C., Christian, E. & Crozier, R.H. (2010) Integrative taxonomy: a multisource approach to exploring biodiversity. *Annual Review of Entomol*ogy, 55, 421–438.
- Settele, J., Kudrna, O., Harpke, A., Kühn, I., van Swaay, C., Verovnik, R., Warren, M., Wiemers, M., Hanspach, J., Hickler, T., Kühn, E., van Halder, I., Veling, K., Vliegenthart, A., Wynhoff, I. & Schweiger, O. (2008) Climatic risk atlas of European butterflies. *Biorisk*, 1, 1–712.
- Storch, I., Bañuelos, M.J., Fernández-Gil, A., Obeso, J.R., Quevedo, M. & Rodríguez-Muñoz, R. (2006) Subspecies Cantabrian capercaillie *Tetrao urogallus cantabricus* endangered according to IUCN criteria. *Journal of Ornithology*, **147**, 653–655.
- Suzuki, R. & Shimodaira, H. (2011) Pvclust: Hierarchical Clustering with P-values via Multiscale Bootstrap Resampling. Contributed package. Version 1-1.10. R Foundation for Statistical Computing, Vienna. http://www.R-project.org.
- Thøstesen, A.M. & Olesen, J.M. (1996) Pollen removal and deposition by specialist and generalist bumblebees in *Aconitum septentrionale*. *Oikos*, **77**, 77–84.
- Tian, L., Rahman, S.R., Ezray, B.D., Franzini, L., Strange, J.P., Lhomme, P. & Hines, H.M. (2019) A homeotic shift late in development drives mimetic color variation in a bumble bee. *Proceedings of the National Academy of Science of the United States of America*, 116(24), 11857–11865.
- Valterová, I., Martinet, B., Michez, D., Rasmont, P. & Brasero, N. (2019) Sexual attraction: a review of bumblebee male pheromones. *Zeitschrift fur Naturforschung. C, Journal of biosciences*, **74**, 233–250.
- Van Swaay, C., Cuttelod, A., Collins, S., Maes, D., Munguira, M.L., Šašić, M., Settele, J., Verovnik, R., Verstrael, T., Warren, M., Wiemers, M. & Wynhoff, I. (2010) *European Red List of Butterflies*. Publications Office of the European Union, Luxembourg.
- Vanderplanck, M., Martinet, B., Carvalheiro, L.G., Rasmont, P., Barraud, A., Renaudeau, C. & Michez, D. (2019) Ensuring access to high-quality resources reduces the impacts of heat stress on bees. *Scientific reports*, 9, 12596.
- Vanderplanck, M., Moerman, R., Rasmont, P., Lognay, G., Wathelet, B., Wattiez, R. & Michez, D. (2014) How Does Pollen Chemistry Impact

Development and Feeding Behaviour of Polylectic Bees? *PLoS ONE*, **9**, e86209.

- Verdú, J.R. & Galante, E. (eds) (2005) Libro Rojo de los Invertebrados de España. Dirección General de Conservación de la Naturaleza, Madrid.
- Vray, S., Lecocq, T., Roberts, S.P.M. & Rasmont, P. (2017) Endangered by laws: potential consequences of regulations against thistles on bumblebee conservation. *Annales de la Société Entomologique de France (NS)*, **53**(1), 33–41.
- Vray, S., Rollin, O., Rasmont, P., Dufrêne, M., Michez, D. & Dendoncker, N. (2019) A century of local changes in bumblebee communities and landscape composition in Belgium. *Journal of Insect Conservation*, 23, 489–501.
- Williams, P.H. (1989) Why are there so many species of bumble bees at dungeness? *Botanical Journal of the Linnean Society*, **101**, 31–44.
- Williams, P.H. (1998) An annotated checklist of bumble bees with an analysis of patterns of description (Hymenoptera: Apidae, Bombini). *Bulletin Natural History Museum London (Entomology)*, 67, 79–152.
- Williams, P.H. (2007) The distribution of bumblebee colour patterns worldwide: possible significance for thermoregulation, crypsis, and warning mimicry. *Biological Journal of the Linnean Society*, **92**, 97–118.
- Williams, P.H., Altanchimeg, D., Byvaltsev, A., De Jonghe, R., Jaffar, S., Japoshvili, G., Kahono, S., Liang, H., Mei, M., Monfared, A., Nidup, T., Raina, R., Ren, Z., Thanoosing, C., Zhao, Y. & Orr, M.C. (2020) Widespread polytypic species or complexes of local species? Revising bumblebees of the subgenus *Melanobombus* world-wide (Hymenoptera, Apidae, *Bombus*). *European Journal of Taxonomy*, **719**(1), 1–120.
- Williams, P.H., Berezin, M.V., Cannings, S.G., Cederberg, B., Ødegaard, F., Rasmussen, C., Richardson, L.L., Rykken, J., Sheffield, C.S., Thanoosing, C. & Byvaltsev, A.M. (2019) The arctic and alpine bumblebees of the subgenus *Alpinobombus* revised from integrative assessment of species' gene coalescents and morphology (Hymenoptera, Apidae, Bombus). *Zootaxa*, **4625**, 1–68.
- Williams, P.H., Brown, M.J.F., Carolan, J.C., An, J., Goulson, D., Aytekin, A.M., Best, L.R., Byvaltsev, A.M., Cederberg, B., Dawson, R., Huang, J., Ito, M., Monfared, A., Raina, R.H., Schmid-Hempel, P., Sheffield, C.S., Šima, P. & Xie, Z. (2012) Unveiling cryptic species of the bumblebee subgenus *Bombus s. str.* worldwide with COI barcodes (Hymenoptera: Apidae). *Systematics and Biodiversity*, 10, 21–56.
- Williams, P.H., Lobo, J.M. & Meseguer, A.S. (2018) Bumblebees take the high road: climatically integrative biogeography shows that escape from Tibet, not Tibetan uplift, is associated with divergences of present-day *Mendacibombus*. *Ecography*, **41**, 461–477.
- Williams, P.H. & Osborne, J.L. (2009) Bumblebee vulnerability and conservation world-wide. *Apidologie*, **40**, 367–387.
- Winfree, R., Bartomeus, I. & Cariveau, D.P. (2011) Native pollinators in anthropogenic habitats. *Annual Reviex of Ecology, Evolution and Systematics*, 42, 1–22.
- Woodard, S.H., Lozier, J.D., Goulson, D., Williams, P.H., Strange, J. P. & Jha, S. (2015) Molecular tools and bumble bees: revealing hidden details of ecology and evolution in a model system. *Molecular Ecology*, 24, 2916–2936.
- Zink, R.M. & Barrowclough, G.F. (2008) Mitochondrial DNA under siege in avian phylogeography. *Molecular Ecology*, 17, 2107–2121.

Accepted 27 April 2021

Editor: Laurence Packer; Associate Editor: Sandra Rehan